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Abstract: The research work describes a technique to tolerate faults in large data structures hosted on distributed 

servers, based on the concept of fused backups. The prevalent solution to this problem is replication. To tolerate the 

faults (dead/unresponsive data structures) among the whole distinct data structures, replication requires replicas of each 

data structure, resulting in number of servers and the number of fault for additional backups. This project present a 

solution, referred to as fusion that uses a combination of erasure codes and selective replication to tolerate f crash faults 

using just additional fused backups. This project shows that the solution achieves savings in space over replication. 

Further, this work present a solution to tolerate Byzantine faults (malicious data structures), that requires only backups 

as compared to the 2nf backups required by replication. We ensure that the overhead for normal operation in fusion is 

only as much as the overhead for replication. Though recovery is costly in fusion, in a system with infrequent faults, 

the savings in space outweighs the cost of recovery. This research work explores the theory of fused backups and 

provides a library of such backups for all the data structures in the Visual Studio Collection Framework. The 

experimental evaluation confirms that fused backups are space-efficient as compared to replication (approximately n 

times), while they cause very little overhead for updates. To illustrate the practical usefulness of fusion, this work use 

fused backups for reliability in Amazon’s highly available key-value store, Dynamo. While the current replication 

based solution uses 300 backup structures, we present a solution that only requires 120 backup structures. This results 

in savings in space as well as other resources such as power. 
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I. INTRODUCTION 
 

Distributed systems are often modeled as a set of 

independent servers interacting with clients through the 

use of messages. To efficiently store and manipulate data, 

these servers typically maintain large instances of data 

structures such as linked lists, queues and hash tables. 

These servers are prone to faults in which the data 

structures may crash, leading to a total loss in state (crash 

faults) or worse, they may behave in an adversarial 

manner, reflecting any arbitrary state, sending wrong 

conflicting messages to the client or other data structures 

(Byzantine faults).  
 

Active replication is the prevalent solution to this problem. 

To tolerate f crash faults among n given data structures, 

replication maintains f + 1 replicas of each data structure, 

resulting in a total of nf backups. These replicas can also 

tolerate [f/2] Byzantine faults, since there is always a 

majority of correct copies available for each data structure.  
 

A common example is a set of lock servers that maintain 

and coordinate the use of locks. Such a server maintains a 

list of pending requests in the form of a queue. To tolerate 

three crash faults among, say five independent lock servers 

each hosting a queue, replication requires four replicas of 

each queue, resulting in a total of fifteen backup queues. 

For large values of n, this is expensive in terms of the 

space required by the backups as well as power and other 

resources to maintain the backup processes.  
 

In this research work , present a technique referred to as 

fusion which combines the best of both these worlds to 

achieve the space efficiency of coding and the minimal  

 
 

update overhead of replication. Given a set of data 

structures, this system maintain a set of fused backup data 

structures that can tolerate f crash faults among the given 

the data structures. In replication, the replicas for each data 

structure are identical to the given data structure. In fusion, 

the backup copies are not identical to the given data 

structures and hence, it make a distinction between the 

given data structures, referred to as primaries and the 

backup data structures, referred to as backups.  
 

II. RELATED WORK 
 

In [1] the theory of fused state machines uses a 

combination of coding theory and replication to ensure 

efficiency as well as savings in storage messages during 

normal operations. Fused state machines may incur higher 

overhead during recovery from crash or Byzantine faults 

that may be acceptable if the probability of fault is low. 
 

In [2], Fusible data structures satisfy three main properties: 

recovery, space constraint and efficient maintenance. The 

recovery property ensures that in case of a failure, the 

fused structure, along with the remaining original data 

structures, can be used to reconstruct the failed structure. 

The space constraint ensures that the number of nodes in 

the fused structures is strictly smaller than the number of 

nodes in the original structures. Finally, the efficient 

maintenance property ensures that when any of the 

original data structures is updated, the fused structure can 

be updated incrementally using local information about the 

update and does not need to be entirely recomputed. 
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In [3], Evaluation of fusion over standard benchmarks 

shows that efficient backups exist for many examples. To 

illustrate the practical use of fusion, we describe a fusion-

based design of a distributed application in the Map 

Reduce framework. While the current replication-based 

solution may require 1.8 million map tasks, a fusion-based 

solution requires just 1.4 million map tasks with minimal 

overhead in terms of time as compared to replication. This 

can result in considerable savings in space and other 

computational resources such as power. 
 

In [4], Dynamo, a highly available and scalable data store, 

used for storing state of a number of core services of 

Amazon e-commerce platform. Dynamo has provided the 

desired levels of availability and performance and has 

been successful in handling server failures, data center 

failures and network partitions. Dynamo is incrementally 

scalable and allows service owners to scale up and down 

based their current request load. Dynamo allows service 

owners to customize their storage system to meet their 

desired performance, durability and consistency SLAs by 

allowing them to tune the parameters N, R, and W.  
 

In [5], RAIDS offer a cost effective option to meet the 

challenge of exponential growth m the processor and 

memory speeds We believe the size reduction of personal 

computer disks is a key to the success of disk arrays, just 

as Gordon Bell argues that the size reduction of micro 

processors is a key to the success in multiprocessors[ Bell 

85] In both cases the smaller size simplifies the 

interconnection of the many components as well as 

packaging and cabling While large arrays of mainframe 

processors (or SLEDS) are possible. it is certainly easier to 

construct an array from the same number of 

microprocessors (or PC drives) Just as Bell coined the 

term “multi” to distinguish a multiprocessor made from 

microprocessors, we use the term “RAID” to identify a 

disk array made from personal computer disks.  
 

III. PROPOSED WORK 
 

Fault tolerance is the ability of a system to perform its 

function correctly even in the presence of internal faults. 

The purpose of fault tolerance is to increase the 

dependability of a system. A complementary but separate 

approach to increasing dependability is fault prevention. 

This consists of techniques, such as inspection, whose 

intent is to eliminate the circumstances by which faults 

arise. In the concept of fusible data structures to maintain 

fault-tolerant data in distributed programs. Given a fusible 

data structure it is possible to combine a set of such 

structures into a single fused structure that is smaller than 

the combined size of the original structures. When any of 

the original data structures is updated, the fused structure 

can be updated incrementally using local information 

about the update and does not need to be entirely 

recomputed. In case of a failure, the fused structure, along 

with the correct original data structures, can be used to 

efficiently reconstruct the failed structure. This approach 

often requires significantly less space than conventional 

backups by replication and still allows efficient operations 

on the original data structures. 

 For example, experiments with fault servers on a 

distributed system suggests that for a system with k 

servers, this approach requires k times less space than the 

active replication approach. 

The main benefits of replication of data can be classified 

as follows: 
 

1. Performance enhancement 

2. Reliability enhancement 

3. Data closer to client 

4. Share workload 

5. Increased availability 

6. Increased fault tolerance 
 

The constraints are classified below: 
 

1. How to keep data consistency (need to ensure a 

satisfactorily consistent image for clients) 

2. Where to place replicas and how updates are 

propagated 

3. Scalability  
 

The Existing solution to this problem is replication. To 

tolerate the faults (dead/unresponsive data structures) 

among the whole distinct data structures, replication 

requires replicas of each data structure, resulting in 

number of servers and the number of fault for additional 

backups.  Application Information Services (AIS) is 

replicated on different sites. It provides replication of 

check points on the grid. Faults ranging from machine 

crashes, media failures, operator errors and random data 

corruption results. In loss of data, both temporarily and 

permanently. Time Delay is very high. 
 

Disadvantages: 
 

• Replication of data backups 

• Time Consuming 

• Network Traffic was high 

• High Cost (System Requirements) 

• Need Additional Backups 
 

The proposed system present a solution, referred to as 

fusion that uses to avoid replication. It shows that the 

solution achieves savings in space over replication. The 

fused backups are space-efficient as compared to 

replication (approximately n times), while they cause very 

little overhead for updates. In our proposed system, the 

data loss and time delay can be reduced when compared to 

the already existing services. Computer can carry pit 

calculation in just few seconds that would require months 

or perhaps even years when carried out by hand. 

Practically, the proposed system never makes a mistake of 

its own accord. 
 

Advantages: 
 

• Avoid Replicas 

• Less Backups 

• Less Processing Time 

• Low Space is enough 

• Network Traffic is avoided 

• Low cost comparing with existing system 

• Router is used for boost up the network speed 
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IV. METHODOLOGY USED 
 

4.1. Insert Fused Backups 
 

This algorithm for the insert of a key-value pair at the 

primaries and the backups. When the client sends an insert 

to a primary Xi, if the key is not already present, Xi creates 

a new node containing this key value, inserts it into the 

primary linked list (denoted primaryLinkedList) and 

inserts a pointer to this node at the end of the aux list 

(auxList). The primary sends the key, the new value to be 

added and the old value associated with the key to all the 

fused backups. Each fused backup maintains a stack (data 

Stack) that contains the primary elements in the coded 

form. On receiving the insert from Xi, if the key is not 

already present, the backup updates the code value of the 

fused node following the one contains the top-most 

element of Xi (pointed to by tos[i]). To maintain order 

information, the backup inserts a pointer to the newly 

updated fused node, into the index structure (indexList[i]) 

for Xi with the key received. A reference count (refCount) 

tracking the number of elements in the fused node is 

maintained to enable efficient deletes. 
 

Algorithm: 

• Step 1: initialize the linked list and Stack  

• Step 2: Insert the backup into linked list 

• Step 3: If replicas contains, insert replica data into 

stack 

• Step 4: Get top of the stack data 

• Step 5: Stored into linked list element 
 

4.2 Delete Fused Backups 
 

Shows the algorithms for the delete of a key at the 

primaries and the backups. Xi deletes the node associated 

with the key from the primary and obtains its value which 

needs to be sent to the backups. Along with this value and 

the key k, the primary also sends the value of the element 

pointed by the tail node of the aux list. This corresponds to 

the top-most element of Xi at the backup stack and is 

hence required for the shift operation that will be 

performed at the backup. After sending these values, the 

primary shifts the final node of the aux list to the position 

of the aux node pointing to the deleted element, to mimic 

the shift of the final element at the backup. 
 

Algorithm: 

• Step 1: Gather Top of the Stack 

• Step 2: Move TOS into linked list 

• Step 3: Store Linked list element 

• Step 4: Clear Stack Elements 

• Step 5: Set Stack is empty, Null is TOS 
 

V. IMPLEMENTATION 
 

5.1 Fault Tolerance 

In this research work , the fault tolerance in distributed 

systems concept and the subjects related to this area will 

be discussed in a detailed manner. Firstly, some basic 

descriptions and concepts about fault tolerance in 

distributed systems will be given as a fisrt adaptation. The 

basic differences between faults, errors and failures will be 

discussed, and fault classifications will be given.  

After giving the detailed information about necessary 

concepts, some failure models in distributed systems will 

be explained with some example cases. 

A reliable client-server model will be explained as an 

example for the failure models in distributed systems. 

Then, main hardware reliability models, that are series and 

parallel models, will be mentioned in a detailed manner. 

After giving the models, another important issue in 

distributed systems will be discussed:  
 

5.2 Replicas 

Replication in computing involves sharing information so 

as to ensure consistency between redundant resources, 

such as software or hardware components, to improve 

reliability, fault-tolerance, or accessibility. 

In this replication module, the files are received and a 

copy is taken. It receives the files which are sent from the 

different servers and it makes a copy and then the files are 

sent to the client. These copies are temporally stored and it 

does not need a memory for copying this files. After the 

client receives the files which are sent from different 

servers, this copy will be erased. So that, it doesn’t need 

extra memory for storing that files which are sent from 

different servers. 

Active (real-time) storage replication is usually 

implemented by distributing updates of a block device to 

several physical hard disks. This way, any file 

system supported by the operating system can be 

replicated without modification, as the file system code 

works on a level above the block device driver layer. It is 

implemented either in hardware (in a disk array controller) 

or in software (in a device driver). 

The most basic method is disk mirroring, typical for 

locally-connected disks. The storage industry narrows the 

definitions, so mirroring is a local (short-distance) 

operation. A replication is extendable across a computer 

network, so the disks can be located in physically distant 

locations, and the master-slave database replication model 

is usually applied. The purpose of replication is to prevent 

damage from failures or disasters that may occur in one 

location, or in case such events do occur, improve the 

ability to recover.For replication, latency is the key factor 

because it determines either how far apart the sites can be 

or the type of replication that can be employed. 
 

5.3 Fused Data Structure 

We introduced an algorithm for the fusion of an array 

based stack structure. We now look at the linked list based 

stacks, i.e., a linked list which supports inserts and deletes 

at only one end, say the tail. The fused stack is basically 

another linked list based stack that contains k tail pointers, 

one for each contributing stack xi. 
 

When an element new Item is pushed onto stack xi, then  

 If tail[i] is the last element of the fused stack, i.e, 

tail[i]:next = null, a new element is inserted at the end 

of the fused queue and tail[i] is updated.  

 Otherwise, new Item is xored with tail[i]:next and 

tail[i] is set to tail[i]:next. 
 

When a node is popped from a stack xi, the value of that 

node is read from xi and passed on to the fused stack. In 
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the fused stack, the node pointed to by tail[i] is xored with 

the old value. If tail[i] is the last node in the fused list and 

no other tail[j] points to tail[i], then the node 

corresponding to tail[i] can be safely deleted once the 

value of tail[i] is updated. Note that in this case, a push 

takes O (1) time but a pop operation may require O(k) 

time, since we check if any other tail points to the node 

being deleted. This satisfies the efficient maintenance 

property of fusible structures since the time required is 

independent of the size of the total number of nodes in the 

original data structure. For constant time pop operations, 

the algorithm for fused stacks can be applied for stacks. 

The fusion of the list based stack requires no more nodes 

than the maximum number of nodes in any of the source 

stacks. The size of each node in the fused stack is the same 

as s, the size of the nodes in the original stack X. The only 

extra space overhead is the k tail pointers maintained. If all 

the stacks are approximately of the same size, the space 

required is k times less than the space required by active 

replication. 
 

VI. EXPERIMENTAL RESULT 
 

 
 

 
 

Fig 6.1 Stack Implementation 
 

 
 

 In this system the stack will be fused when more than 

one replicated data files transfer to the client machine. 

 The array based stack data structure maintains an array 

of data, an       index tos pointing to the element in the 

array representing the top of the stack and the usual 

push and pop operations. 
 

Push Operation 

function xi:push(newItem) 

xi.array[xi.tos] := newItem; 

xi.tos++; 

y.push(i,newItem); 

end function 

function y:push(i; newItem) 

y.array[y.tos[i]] := y.array[y.tos[i]]  newItem; 

y.tos[i]++; 

end function 
 

Pop Operation 

function xi:pop() 

x.tos[i] --; 

y.pop(i, xi.array[xi.tos]); 

return xi.array[xi.tos] 

function y:pop(i; oldItem) 

y.tos[i] --; 

y.array[y.tos[i]] := y.array[y.tos[i]]  oldItem; 

end function 

Recover Operation 

function y:recover(failedP rocess) 

/*Assuming that all source stacks have the same size*/ 

recoveredArray := new Array[y.array.size]; 

for j = 0 to tos[failedP rocess] ¡ 1 

recItem := y[j]; 

foreach process p != failedP rocess 

if (j < tos[p]) recItem := recItem  xp.array[j]; 

recoveredArray[j] := recItem; 

return recoveredArray, tos[failedProcess] 
 

Performance Comparison with the Existing System 
 

 
 

Fig 6.2 Performance Comparison with the Existing System 
 

To correct f crash faults among n primaries, fusion 

requires f backup data structures as compared to the nf 

backup data structures required by replication. For 

Byzantine faults, fusion requires nf + f backups as 

compared to the 2nf backups required by replication. 

For crash faults, the total space occupied by the fused 

backups in msf as compared to nmsf for replication (nf 

backups of size ms each). For Byzantine faults, since we 

maintain f copies of each primary along with f fused 

backups, the space complexity for fusion is nfms + msf as 

compared to 2nmsf for replication. 
 

Performance of Fused Backups 

This refers to the number of messages that need to be 

exchanged once a fault has been detected. When t crash 

faults are detected, in fusion, the client needs to acquire 

the state of all the remaining data structures. This requires 

n−t messages of size O(ms) each. In replication the client 

only needs to acquire the state of the failed copies 
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Fig 6.3 Performance of Fused Backups 
 

Requiring only t messages of size O(ms) each. For 

Byzantine faults, in fusion, the state of all n + nf + f data 

structures (primaries and backups) needs to be acquired. 

This requires nf + f messages of size O(ms) each. In 

replication, only the state of any 2t + 1 copies of the faulty 

primary are needed, requiring just 2t + 1 messages of size 

O(ms) each. 
 

 
 

Fig 6.4 Time Complexity of Fused Backups 
 

It defines the number of backups move from the different 

servers to the client also analysis the faulted and corrected 

backup’s performance. The chart defines different backups 

and corrected data transfer to the client machine. 
 

VII. CONCLUSION AND FUTURE WORK 
 

A fusion-based technique for fault tolerance that savings 

in space as compared to replication with almost no 

overhead during normal operation. This System provide a 

generic design of fused backups and their implementation 

for all the data structures in the Visual Studio framework 

that includes vectors, stacks, maps, trees, and most other 

commonly used data structures. This System compare the 

main features of work with replication, both theoretically 

and experimentally. This work confirms that fusion is 

extremely space efficient while replication is efficient in 

terms of recovery, load on the backups and the size of the 

messages that need to be sent to the backups.  
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