
ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.410123 544

Secure Network Storage System in Distributed

Applications using Fused Data Structures

Dr. S. Ravichandran

Assistant

Professor, Department of Computer Science, H.H. The Rajah’s College (Autonomous), Pudukkottai

Abstract: The research work describes a technique to tolerate faults in large data structures hosted on distributed

servers, based on the concept of fused backups. The prevalent solution to this problem is replication. To tolerate the

faults (dead/unresponsive data structures) among the whole distinct data structures, replication requires replicas of each

data structure, resulting in number of servers and the number of fault for additional backups. This project present a

solution, referred to as fusion that uses a combination of erasure codes and selective replication to tolerate f crash faults

using just additional fused backups. This project shows that the solution achieves savings in space over replication.

Further, this work present a solution to tolerate Byzantine faults (malicious data structures), that requires only backups

as compared to the 2nf backups required by replication. We ensure that the overhead for normal operation in fusion is

only as much as the overhead for replication. Though recovery is costly in fusion, in a system with infrequent faults,

the savings in space outweighs the cost of recovery. This research work explores the theory of fused backups and

provides a library of such backups for all the data structures in the Visual Studio Collection Framework. The

experimental evaluation confirms that fused backups are space-efficient as compared to replication (approximately n

times), while they cause very little overhead for updates. To illustrate the practical usefulness of fusion, this work use

fused backups for reliability in Amazon’s highly available key-value store, Dynamo. While the current replication

based solution uses 300 backup structures, we present a solution that only requires 120 backup structures. This results

in savings in space as well as other resources such as power.

Keywords: Data Structure, Distributed Application, Fault Tolerance, Network Storage.

I. INTRODUCTION

Distributed systems are often modeled as a set of

independent servers interacting with clients through the

use of messages. To efficiently store and manipulate data,

these servers typically maintain large instances of data

structures such as linked lists, queues and hash tables.

These servers are prone to faults in which the data

structures may crash, leading to a total loss in state (crash

faults) or worse, they may behave in an adversarial

manner, reflecting any arbitrary state, sending wrong

conflicting messages to the client or other data structures

(Byzantine faults).

Active replication is the prevalent solution to this problem.

To tolerate f crash faults among n given data structures,

replication maintains f + 1 replicas of each data structure,

resulting in a total of nf backups. These replicas can also

tolerate [f/2] Byzantine faults, since there is always a

majority of correct copies available for each data structure.

A common example is a set of lock servers that maintain

and coordinate the use of locks. Such a server maintains a

list of pending requests in the form of a queue. To tolerate

three crash faults among, say five independent lock servers

each hosting a queue, replication requires four replicas of

each queue, resulting in a total of fifteen backup queues.

For large values of n, this is expensive in terms of the

space required by the backups as well as power and other

resources to maintain the backup processes.

In this research work , present a technique referred to as

fusion which combines the best of both these worlds to

achieve the space efficiency of coding and the minimal

update overhead of replication. Given a set of data

structures, this system maintain a set of fused backup data

structures that can tolerate f crash faults among the given

the data structures. In replication, the replicas for each data

structure are identical to the given data structure. In fusion,

the backup copies are not identical to the given data

structures and hence, it make a distinction between the

given data structures, referred to as primaries and the

backup data structures, referred to as backups.

II. RELATED WORK

In [1] the theory of fused state machines uses a

combination of coding theory and replication to ensure

efficiency as well as savings in storage messages during

normal operations. Fused state machines may incur higher

overhead during recovery from crash or Byzantine faults

that may be acceptable if the probability of fault is low.

In [2], Fusible data structures satisfy three main properties:

recovery, space constraint and efficient maintenance. The

recovery property ensures that in case of a failure, the

fused structure, along with the remaining original data

structures, can be used to reconstruct the failed structure.

The space constraint ensures that the number of nodes in

the fused structures is strictly smaller than the number of

nodes in the original structures. Finally, the efficient

maintenance property ensures that when any of the

original data structures is updated, the fused structure can

be updated incrementally using local information about the

update and does not need to be entirely recomputed.

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.410123 545

In [3], Evaluation of fusion over standard benchmarks

shows that efficient backups exist for many examples. To

illustrate the practical use of fusion, we describe a fusion-

based design of a distributed application in the Map

Reduce framework. While the current replication-based

solution may require 1.8 million map tasks, a fusion-based

solution requires just 1.4 million map tasks with minimal

overhead in terms of time as compared to replication. This

can result in considerable savings in space and other

computational resources such as power.

In [4], Dynamo, a highly available and scalable data store,

used for storing state of a number of core services of

Amazon e-commerce platform. Dynamo has provided the

desired levels of availability and performance and has

been successful in handling server failures, data center

failures and network partitions. Dynamo is incrementally

scalable and allows service owners to scale up and down

based their current request load. Dynamo allows service

owners to customize their storage system to meet their

desired performance, durability and consistency SLAs by

allowing them to tune the parameters N, R, and W.

In [5], RAIDS offer a cost effective option to meet the

challenge of exponential growth m the processor and

memory speeds We believe the size reduction of personal

computer disks is a key to the success of disk arrays, just

as Gordon Bell argues that the size reduction of micro

processors is a key to the success in multiprocessors[Bell

85] In both cases the smaller size simplifies the

interconnection of the many components as well as

packaging and cabling While large arrays of mainframe

processors (or SLEDS) are possible. it is certainly easier to

construct an array from the same number of

microprocessors (or PC drives) Just as Bell coined the

term “multi” to distinguish a multiprocessor made from

microprocessors, we use the term “RAID” to identify a

disk array made from personal computer disks.

III. PROPOSED WORK

Fault tolerance is the ability of a system to perform its

function correctly even in the presence of internal faults.

The purpose of fault tolerance is to increase the

dependability of a system. A complementary but separate

approach to increasing dependability is fault prevention.

This consists of techniques, such as inspection, whose

intent is to eliminate the circumstances by which faults

arise. In the concept of fusible data structures to maintain

fault-tolerant data in distributed programs. Given a fusible

data structure it is possible to combine a set of such

structures into a single fused structure that is smaller than

the combined size of the original structures. When any of

the original data structures is updated, the fused structure

can be updated incrementally using local information

about the update and does not need to be entirely

recomputed. In case of a failure, the fused structure, along

with the correct original data structures, can be used to

efficiently reconstruct the failed structure. This approach

often requires significantly less space than conventional

backups by replication and still allows efficient operations

on the original data structures.

 For example, experiments with fault servers on a

distributed system suggests that for a system with k

servers, this approach requires k times less space than the

active replication approach.

The main benefits of replication of data can be classified

as follows:

1. Performance enhancement

2. Reliability enhancement

3. Data closer to client

4. Share workload

5. Increased availability

6. Increased fault tolerance

The constraints are classified below:

1. How to keep data consistency (need to ensure a

satisfactorily consistent image for clients)

2. Where to place replicas and how updates are

propagated

3. Scalability

The Existing solution to this problem is replication. To

tolerate the faults (dead/unresponsive data structures)

among the whole distinct data structures, replication

requires replicas of each data structure, resulting in

number of servers and the number of fault for additional

backups. Application Information Services (AIS) is

replicated on different sites. It provides replication of

check points on the grid. Faults ranging from machine

crashes, media failures, operator errors and random data

corruption results. In loss of data, both temporarily and

permanently. Time Delay is very high.

Disadvantages:

• Replication of data backups

• Time Consuming

• Network Traffic was high

• High Cost (System Requirements)

• Need Additional Backups

The proposed system present a solution, referred to as

fusion that uses to avoid replication. It shows that the

solution achieves savings in space over replication. The

fused backups are space-efficient as compared to

replication (approximately n times), while they cause very

little overhead for updates. In our proposed system, the

data loss and time delay can be reduced when compared to

the already existing services. Computer can carry pit

calculation in just few seconds that would require months

or perhaps even years when carried out by hand.

Practically, the proposed system never makes a mistake of

its own accord.

Advantages:

• Avoid Replicas

• Less Backups

• Less Processing Time

• Low Space is enough

• Network Traffic is avoided

• Low cost comparing with existing system

• Router is used for boost up the network speed

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.410123 546

IV. METHODOLOGY USED

4.1. Insert Fused Backups

This algorithm for the insert of a key-value pair at the

primaries and the backups. When the client sends an insert

to a primary Xi, if the key is not already present, Xi creates

a new node containing this key value, inserts it into the

primary linked list (denoted primaryLinkedList) and

inserts a pointer to this node at the end of the aux list

(auxList). The primary sends the key, the new value to be

added and the old value associated with the key to all the

fused backups. Each fused backup maintains a stack (data

Stack) that contains the primary elements in the coded

form. On receiving the insert from Xi, if the key is not

already present, the backup updates the code value of the

fused node following the one contains the top-most

element of Xi (pointed to by tos[i]). To maintain order

information, the backup inserts a pointer to the newly

updated fused node, into the index structure (indexList[i])

for Xi with the key received. A reference count (refCount)

tracking the number of elements in the fused node is

maintained to enable efficient deletes.

Algorithm:

• Step 1: initialize the linked list and Stack

• Step 2: Insert the backup into linked list

• Step 3: If replicas contains, insert replica data into

stack

• Step 4: Get top of the stack data

• Step 5: Stored into linked list element

4.2 Delete Fused Backups

Shows the algorithms for the delete of a key at the

primaries and the backups. Xi deletes the node associated

with the key from the primary and obtains its value which

needs to be sent to the backups. Along with this value and

the key k, the primary also sends the value of the element

pointed by the tail node of the aux list. This corresponds to

the top-most element of Xi at the backup stack and is

hence required for the shift operation that will be

performed at the backup. After sending these values, the

primary shifts the final node of the aux list to the position

of the aux node pointing to the deleted element, to mimic

the shift of the final element at the backup.

Algorithm:

• Step 1: Gather Top of the Stack

• Step 2: Move TOS into linked list

• Step 3: Store Linked list element

• Step 4: Clear Stack Elements

• Step 5: Set Stack is empty, Null is TOS

V. IMPLEMENTATION

5.1 Fault Tolerance

In this research work , the fault tolerance in distributed

systems concept and the subjects related to this area will

be discussed in a detailed manner. Firstly, some basic

descriptions and concepts about fault tolerance in

distributed systems will be given as a fisrt adaptation. The

basic differences between faults, errors and failures will be

discussed, and fault classifications will be given.

After giving the detailed information about necessary

concepts, some failure models in distributed systems will

be explained with some example cases.

A reliable client-server model will be explained as an

example for the failure models in distributed systems.

Then, main hardware reliability models, that are series and

parallel models, will be mentioned in a detailed manner.

After giving the models, another important issue in

distributed systems will be discussed:

5.2 Replicas

Replication in computing involves sharing information so

as to ensure consistency between redundant resources,

such as software or hardware components, to improve

reliability, fault-tolerance, or accessibility.

In this replication module, the files are received and a

copy is taken. It receives the files which are sent from the

different servers and it makes a copy and then the files are

sent to the client. These copies are temporally stored and it

does not need a memory for copying this files. After the

client receives the files which are sent from different

servers, this copy will be erased. So that, it doesn’t need

extra memory for storing that files which are sent from

different servers.

Active (real-time) storage replication is usually

implemented by distributing updates of a block device to

several physical hard disks. This way, any file

system supported by the operating system can be

replicated without modification, as the file system code

works on a level above the block device driver layer. It is

implemented either in hardware (in a disk array controller)

or in software (in a device driver).

The most basic method is disk mirroring, typical for

locally-connected disks. The storage industry narrows the

definitions, so mirroring is a local (short-distance)

operation. A replication is extendable across a computer

network, so the disks can be located in physically distant

locations, and the master-slave database replication model

is usually applied. The purpose of replication is to prevent

damage from failures or disasters that may occur in one

location, or in case such events do occur, improve the

ability to recover.For replication, latency is the key factor

because it determines either how far apart the sites can be

or the type of replication that can be employed.

5.3 Fused Data Structure

We introduced an algorithm for the fusion of an array

based stack structure. We now look at the linked list based

stacks, i.e., a linked list which supports inserts and deletes

at only one end, say the tail. The fused stack is basically

another linked list based stack that contains k tail pointers,

one for each contributing stack xi.

When an element new Item is pushed onto stack xi, then

 If tail[i] is the last element of the fused stack, i.e,

tail[i]:next = null, a new element is inserted at the end

of the fused queue and tail[i] is updated.

 Otherwise, new Item is xored with tail[i]:next and

tail[i] is set to tail[i]:next.

When a node is popped from a stack xi, the value of that

node is read from xi and passed on to the fused stack. In

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.410123 547

the fused stack, the node pointed to by tail[i] is xored with

the old value. If tail[i] is the last node in the fused list and

no other tail[j] points to tail[i], then the node

corresponding to tail[i] can be safely deleted once the

value of tail[i] is updated. Note that in this case, a push

takes O (1) time but a pop operation may require O(k)

time, since we check if any other tail points to the node

being deleted. This satisfies the efficient maintenance

property of fusible structures since the time required is

independent of the size of the total number of nodes in the

original data structure. For constant time pop operations,

the algorithm for fused stacks can be applied for stacks.

The fusion of the list based stack requires no more nodes

than the maximum number of nodes in any of the source

stacks. The size of each node in the fused stack is the same

as s, the size of the nodes in the original stack X. The only

extra space overhead is the k tail pointers maintained. If all

the stacks are approximately of the same size, the space

required is k times less than the space required by active

replication.

VI. EXPERIMENTAL RESULT

Fig 6.1 Stack Implementation

 In this system the stack will be fused when more than

one replicated data files transfer to the client machine.

 The array based stack data structure maintains an array

of data, an index tos pointing to the element in the

array representing the top of the stack and the usual

push and pop operations.

Push Operation

function xi:push(newItem)

xi.array[xi.tos] := newItem;

xi.tos++;

y.push(i,newItem);

end function

function y:push(i; newItem)

y.array[y.tos[i]] := y.array[y.tos[i]] newItem;

y.tos[i]++;

end function

Pop Operation

function xi:pop()

x.tos[i] --;

y.pop(i, xi.array[xi.tos]);

return xi.array[xi.tos]

function y:pop(i; oldItem)

y.tos[i] --;

y.array[y.tos[i]] := y.array[y.tos[i]] oldItem;

end function

Recover Operation

function y:recover(failedP rocess)

/*Assuming that all source stacks have the same size*/

recoveredArray := new Array[y.array.size];

for j = 0 to tos[failedP rocess] ¡ 1

recItem := y[j];

foreach process p != failedP rocess

if (j < tos[p]) recItem := recItem xp.array[j];

recoveredArray[j] := recItem;

return recoveredArray, tos[failedProcess]

Performance Comparison with the Existing System

Fig 6.2 Performance Comparison with the Existing System

To correct f crash faults among n primaries, fusion

requires f backup data structures as compared to the nf

backup data structures required by replication. For

Byzantine faults, fusion requires nf + f backups as

compared to the 2nf backups required by replication.

For crash faults, the total space occupied by the fused

backups in msf as compared to nmsf for replication (nf

backups of size ms each). For Byzantine faults, since we

maintain f copies of each primary along with f fused

backups, the space complexity for fusion is nfms + msf as

compared to 2nmsf for replication.

Performance of Fused Backups

This refers to the number of messages that need to be

exchanged once a fault has been detected. When t crash

faults are detected, in fusion, the client needs to acquire

the state of all the remaining data structures. This requires

n−t messages of size O(ms) each. In replication the client

only needs to acquire the state of the failed copies

0

20

40

60

80

100

120

n Fused

Backups

with State

Machines

n Fused

Backups

with Data

Structures

No. of Data

Files

Backup

Needed

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.410123 548

Fig 6.3 Performance of Fused Backups

Requiring only t messages of size O(ms) each. For

Byzantine faults, in fusion, the state of all n + nf + f data

structures (primaries and backups) needs to be acquired.

This requires nf + f messages of size O(ms) each. In

replication, only the state of any 2t + 1 copies of the faulty

primary are needed, requiring just 2t + 1 messages of size

O(ms) each.

Fig 6.4 Time Complexity of Fused Backups

It defines the number of backups move from the different

servers to the client also analysis the faulted and corrected

backup’s performance. The chart defines different backups

and corrected data transfer to the client machine.

VII. CONCLUSION AND FUTURE WORK

A fusion-based technique for fault tolerance that savings

in space as compared to replication with almost no

overhead during normal operation. This System provide a

generic design of fused backups and their implementation

for all the data structures in the Visual Studio framework

that includes vectors, stacks, maps, trees, and most other

commonly used data structures. This System compare the

main features of work with replication, both theoretically

and experimentally. This work confirms that fusion is

extremely space efficient while replication is efficient in

terms of recovery, load on the backups and the size of the

messages that need to be sent to the backups.

REFERENCES

[1] Bharath Balasubramanian and Vijay K. Garg. Fused data structure

library (implemented in java 1.6). In Parallel and Distributed
Systems Laboratory, http://maple.ece.utexas.edu, 2010.

[2] Vijay K. Garg. Implementing fault-tolerant services using state

machines:Beyond replication. In DISC, pages 450–464, 2010.
[3] Bharath Balasubramanian and Vijay K. Garg. Fused data structures

for handling multiple faults in distributed systems. In Proceedings
of the 2011 31st International Conference on Distributed

Computing Systems, ICDCS ’11, pages 677–688, Washington, DC,

USA, 2011. IEEE Computer Society.
[4] Bharath Balasubramanian and Vijay K. Garg. Fused state machines

for fault tolerance in distributed systems. In Principles of

Distributed Systems - 15th International Conference, OPODIS
2011, Toulouse, France, December 13-16, 2011. Proceedings,

volume 7109 of Lecture Notes in Computer Science, pages 266–

282. Springer, 2011.
[5] P. M. Melliar-Smith, L. E. Moser, and V. Agrawala. Broadcast

protocols for distributed systems. IEEE Trans. Parallel Distrib.

Syst., 1(1):17–25, January 1990.
[6] J.S. Plank and L. Xu, “Optimizing Cauchy Reed-Solomon Codes for

Fault-Tolerant Network Storage Applications,” Proc. IEEE Fifth

Int’l Symp. Network Computing and Applications, pp. 173-180,
2006.

[7] M.O. Rabin, “Efficient Dispersal of Information for Security, Load

Balancing, and Fault Tolerance,” J. ACM, vol. 36, no. 2, pp. 335-
348, 1989.

[8] I.S. Reed and G. Solomon, “Polynomial Codes over Certain Finite

Fields,” J. Soc. for Industrial and Applied Math., vol. 8, no. 2, pp.
300-304, 1960.

[9] F.B. Schneider, “Byzantine Generals in Action: Implementing Fail-

Stop Processors,” ACM Trans. Computer Systems, vol. 2, no. 2, pp.
145-154, 1984.

[10] F.B. Schneider, “Implementing Fault-Tolerant Services Using the

State Machine Approach: A Tutorial,” ACM Computing Surveys,
vol. 22, no. 4, pp. 299-319, 1990.

[11] C.E. Shannon, “A Mathematical Theory of Communication,” Bell

Systems Technical J., vol. 27, pp. 379-423 and 623-656, 1948.
[12] J.K. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,

D. Mazie`res, S. Mitra, A. Narayanan, M. Rosenblum, S.M.

Rumble, E. Stratmann, and R. Stutsman, “The Case for
RAMClouds: Scalable High-Performance Storage Entirely in

Dram,” ACM SIGOPS Operating Systems Rev., vol. 43, pp. 92-

105, 2009.
[13] D.A. Patterson, G. Gibson, and R.H. Katz, “A Case for Redundant

Arrays of Inexpensive Disks (RAID),” Proc. ACM SIGMOD Int’l

Conf. Management of Data (SIGMOD ’88), pp. 109-116, 1988.
[14] W.W. Peterson and E.J. Weldon, Error-Correcting Codes - Revised,

second ed. The MIT Press, Mar. 1972.

 [15] J.S. Plank, “A Tutorial on Reed-Solomon Coding for Fault-
Tolerance in RAID-Like Systems,” Software - Practice and

Experience, vol. 27, no. 9, pp. 995-1012, Sept. 1997.

[16] J.S. Plank, S. Simmerman, and C.D. Schuman, “Jerasure: A Library
in C/C++ Facilitating Erasure Coding for Storage Applications -

Version 1.2,” Technical Report CS-08-627, Univ. of Tennessee,

Aug. 2008.

	II. RELATED WORK
	PROPOSED WORK
	METHODOLOGY USED
	VI. EXPERIMENTAL RESULT

